
CONDITIONAL

STATEMENTS

OVERVIEW

OVERVIEW

▪ Many times we want programs to make decisions

▪ What drink should we dispense from the vending machine?

▪ Should we let the user withdraw money from this account?

▪ We make this choice by looking at values of variables

▪ When variables meet one condition we do one thing

▪ When variables do not meet condition we do something else

▪ To make decisions in a program we need conditional

statements that let us take different paths through code

CSCE 2004 - Programming Foundations I 2

OVERVIEW

▪ In C++ there are three types of conditional statements:

▪ The if statement

▪ The if-else statement

▪ The switch statement

▪ Lesson objectives:

▪ Learn how logical expressions are written

▪ Learn the syntax and semantics of conditional statements

▪ Study example programs showing their use

▪ Complete online lab on conditional statements

▪ Complete programming project using conditional statements

CSCE 2004 - Programming Foundations I 3

CONDITIONAL

STATEMENTS

PART 1

LOGICAL EXPRESSIONS

LOGICAL

EXPRESSIONS

▪ The fundamental building block of all C++ conditional

statements is the logical expression

▪ Logical expressions always return a Boolean value of

either true or false

▪ Logical expressions are used to decide what portions of

the program to execute and what to skip over

▪ Simple logical expressions are of the form:

(data relational_operator data)

▪ Data terms in logical expressions can be variables,

constants or arithmetic expressions

CSCE 2004 - Programming Foundations I 5

LOGICAL

EXPRESSIONS

▪ The C++ relational operators are:

< less than

> greater than

<= less than or equal

>= greater than or equal

== equal to

!= not equal to

CSCE 2004 - Programming Foundations I 6

LOGICAL

EXPRESSIONS

▪ Examples using numbers:

▪ (17 < 42) is true

▪ (42 > 17) is true

▪ (17 == 42) is false

▪ (42 != 17) is true

▪ ((42 - 17) > (42 + 17)) is false

▪ ((17 * 3) <= (17 + 17 + 17) is true

▪ string str = “john”

▪ (“JOHN” == str) is false

▪ (“abc” < “xyz”) is true

CSCE 2004 - Programming Foundations I 7

LOGICAL

EXPRESSIONS

▪ Examples with variables:

▪ int a=17, b=42;

▪ (a < b) is true

▪ (a >= b) is false

▪ (a == 17) is true

▪ (a != b) is true

▪ ((a + 17) == b) is false

▪ ((42 – a) < b) is true

CSCE 2004 - Programming Foundations I 8

LOGICAL

EXPRESSIONS

▪ Warning: Do not use a single = for checking equality

▪ If you use = instead of == you will NOT get an error message

but it will return a true/false value you are NOT expecting

▪ The = operator is only used for data assignment to variables

as we saw in the previous section

▪ Warning: Do not use =<, =>, =! to compare data values

▪ You will get a compiler error message if you type these

relational operators in backwards

▪ Just remember the correct operators <=, >=, != all end with

“equal” just like the phrases “less than or equal”

CSCE 2004 - Programming Foundations I 9

COMPLEX LOGICAL

EXPRESSIONS

▪ We can combine simple logical expressions to get
complex logical expressions that are more powerful

▪ For example: checking the user has entered enough
money AND the vending machine has that item available

▪ The syntax is: (expression logical_operator expression)

▪ The two expressions above can either be simple logical
expressions or complex logical expressions

▪ The C++ logical operators are:

&& and

|| or

CSCE 2004 - Programming Foundations I 10

COMPLEX LOGICAL

EXPRESSIONS

▪ Truth tables are often be used to enumerate all possible

values of a complex logical expression

▪ We make columns for all logical expressions

▪ Each row illustrates one set of input values

▪ The maximum number of rows is always a power of 2

CSCE 2004 - Programming Foundations I 11

A B A	&&	B A	||	B

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

Only true if both

A and B are true
Only true if either

A and B are true

COMPLEX LOGICAL

EXPRESSIONS

▪ C++ evaluates complex logical expressions from left to right

▪ (exp1 && exp2) will be true if both exp are true

▪ (exp1 && exp2 && exp3) will be true if all exp are true

▪ (exp1 || exp2 || exp3) will be true if any exp is true

▪ C++ has a feature called “conditional evaluation” that will

stop the evaluation early in some cases

▪ (exp1 && exp2) will be false if exp1 is false

▪ (exp1 || exp2) will be true if exp1 is true

▪ In both cases, C++ does not need to evaluate exp2 because

the answer is already known after looking at exp1

CSCE 2004 - Programming Foundations I 12

EXAMPLES

Num1 = 23;

Num2 = 0;

(Num2 > 0) && (Num1/Num2 < 42) ---> false

Num1 = 49;

Num2 = 7;

(Num2 > 0) && (Num1/Num2 < 42) ---> true

CSCE 2004 - Programming Foundations I 13

COMPLEX LOGICAL

EXPRESSIONS

▪ Complex logical expressions

▪ ((17 < 42) && (42 < 17)) is false, because second half is false

▪ ((17 <= 42) || (42 <= 17)) is true, because first half is true

▪ When float variables x = 3.14 and y = 7.89

▪ ((x < 4) && (y < 8)) is true, because both halves are true

▪ ((x > 3) && (y > 8)) is false, because second half is false

▪ ((x < 4) || (y > 8)) is true, because first half is true

▪ ((x < 3) || (y < 8)) is true, because second half is true

▪ ((x > 4) || (y > 8)) is false, because both halves are false

CSCE 2004 - Programming Foundations I 14

START HERE

CSCE 2004 - Programming Foundations I 15

THE NOT OPERATOR

▪ The not operator in in C++ reverses the value of any

logical expression

▪ Logically “not true” is same as “false”

▪ Logically “not false” is same as “true”

▪ The C++ syntax for the not operator is: ! expression

▪ This is a “unary” operator since there is just one logical

expression to the right of the not operator

CSCE 2004 - Programming Foundations I 16

THE NOT OPERATOR

▪ Examples with integer variables a = 7 and b = 3

▪ (a > b) is true ! (a > b) is false

▪ (a <= b) is false ! (a <= b) is true

▪ (a == b) is false ! (a == b) is true

▪ (a != b) is true ! (a != b) is false

CSCE 2004 - Programming Foundations I 17

THE NOT OPERATOR

▪ We can often “move the not operation inside” a simple

logical expression

▪ To do this simplification, we need to remove the ! operator

and “reverse the logic” of the relational operator

▪ ! (a < b) same as (a >= b)

▪ ! (a <= b) same as (a > b)

▪ ! (a > b) same as (a <= b)

▪ ! (a >= b) same as (a < b)

▪ ! (a == b) same as (a != b)

▪ ! (a != b) same as (a == b)

CSCE 2004 - Programming Foundations I 18

Notice that

the opposite of < is >=

the opposite of > is <=

the opposite of == is !=

THE NOT OPERATOR

▪ When exp1 and exp2 are simple logical expressions

▪ ! (exp1 && exp2) is same as (!exp1 || !exp2)

▪ ! (exp1 || exp2) is same as (!exp1 && !exp2)

▪ ! (!exp1 || !exp2) is same as (!!exp1 && !!exp2) or (exp1 && exp2)

▪ ! (!exp1 && !exp2) is same as (!!exp1 || !!exp2) or (exp1 || exp2)

▪ Hence, there are many different ways to represent the same

logical expression

▪ Your goal when programming is to choose the simplest logical

expression that represents the relationships you are looking for

CSCE 2004 - Programming Foundations I 19

THE NOT OPERATOR

▪ Examples with float variables x = 4.3 and y = 9.2

▪ !((x < 5) && (y < 10)) is false

▪ (!(x < 5) || !(y < 10)) is false

▪ ((x >= 5) || (y >= 10)) is false

▪ !((x >= 5) || (y >= 10)) is true

▪ (!(x >= 5) && !(y >= 10)) is true

▪ ((x < 5) && (y < 10)) is true

CSCE 2004 - Programming Foundations I 20

To most people, these logical

expressions are the simplest

to read and understand

SUMMARY

▪ In this section, we have focused on how logical

expressions can be written in C++

▪ We have seen how relational operators (<, <=, >, >=, ==,

and !=) can be used to create simple logical expressions

▪ We have seen how logical operators (&& and !!) can be

used to make more complex logical expressions

▪ Finally, we have seen how the not operator (!) can be used

to reverse the true/false value of logical expressions

CSCE 2004 - Programming Foundations I 21

DE MORGAN’S LAWS

(OPTIONAL)

▪ We can extend truth tables to study the not operator

▪ Add new columns showing !A and !B and their use in

complex logical expressions with && and ||

CSCE 2004 - Programming Foundations I 22

A B !A !B A	&&	B A	||	B !A	&&	!B !A	||	!B

TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE

Notice anything

interesting here?

DE MORGAN’S LAWS

(OPTIONAL)

▪ We can extend truth tables to study the not operator

▪ Add new columns showing !A and !B and their use in

complex logical expressions with && and ||

CSCE 2004 - Programming Foundations I 23

A B !A !B A	&&	B A	||	B !A	&&	!B !A	||	!B

TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE

These columns have opposite values so

! (A || B) is the same as !A && !B

DE MORGAN’S LAWS

(OPTIONAL)

▪ We can extend truth tables to study the not operator

▪ Add new columns showing !A and !B and their use in

complex logical expressions with && and ||

CSCE 2004 - Programming Foundations I 24

A B !A !B A	&&	B A	||	B !A	&&	!B !A	||	!B

TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE

A similar pattern

occurs here too

DE MORGAN’S LAWS

(OPTIONAL)

▪ We can extend truth tables to study the not operator

▪ Add new columns showing !A and !B and their use in

complex logical expressions with && and ||

CSCE 2004 - Programming Foundations I 25

A B !A !B A	&&	B A	||	B !A	&&	!B !A	||	!B

TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE

These columns have opposite values so

! (A && B) is the same as !A || !B

DE MORGAN’S LAWS

(OPTIONAL)

▪ From the truth tables above we saw:

! (A || B) is the same as !A && !B

"not (A or B)" is the same as "(not A) and (not B)”

! (A && B) is the same as !A || !B

"not (A and B)" is the same as "(not A) or (not B)”

▪ These rules are known as “De Morgan’s Laws”

▪ We can use this rule to simplify a complex logical expression
by “moving the not operation inside”

▪ We can also simplify !A and !B by “reversing the logic” of the
relational operator

▪ The final result is a statement that is logically equivalent to
the initial statement and often easier to read / understand

CSCE 2004 - Programming Foundations I 26

DE MORGAN’S LAWS

(OPTIONAL)

▪ To apply De Morgan’s Laws, we must change the logical

operator and the expressions

▪ The && operator changes into ||

▪ The || operator changes into &&

▪ The ! is applied to both expressions

▪ Two not operators side by side cancel each other out so

they can be removed without changing the expression

▪ “!! true” is equal to “! false” which is equal to “true”

CSCE 2004 - Programming Foundations I 27

CONDITIONAL

STATEMENTS

PART 2

IF STATEMENTS

THE IF STATEMENT

▪ Sometimes we want to selectively execute a block of code

▪ The C++ syntax of the if statement is:

if (logical expression)

{

// Block of code to execute if expression is true

}

▪ When expression is true, the block of code is executed

▪ When expression is false, the block of code is skipped

CSCE 2004 - Programming Foundations I 29

THE IF STATEMENT

▪ Programming style suggestions:

▪ The block of code should be indented 3-4 spaces to aid

program readability

▪ If the block of code is only one line long, we can omit the curly

brackets { } and shorten the length of the program

▪ Never put a semi-colon directly after the Boolean

expression in an if statement

▪ The empty statement between) and ; will be selectively

executed based on the logical expression value

▪ The block of code directly below if statement will always be

executed, which is probably not what you intended

CSCE 2004 - Programming Foundations I 30

THE IF STATEMENT

▪ We can visualize the program’s if statement decision

process using a “flow chart” diagram

CSCE 2004 - Programming Foundations I 31

Logical

expression

Block of code

true

false

THE IF STATEMENT

▪ If the logical expression is true, we take one path through

the diagram (executing the block of code)

CSCE 2004 - Programming Foundations I 32

Logical

expression

Block of code

true

false

THE IF STATEMENT

▪ If the logical expression is false, we take a different path

through the diagram (skipping over the block of code)

CSCE 2004 - Programming Foundations I 33

Logical

expression

Block of code

true

false

THE IF STATEMENT

// Simple if statement

int a, b;

cin >> a >> b;

if (a < b)

{

cout << “A is smaller than B\n”;

}

▪ Depending on what data values the user enters, the cout

statement will executed or skipped

CSCE 2004 - Programming Foundations I 34

THE IF STATEMENT

// One line block of code

int a, b;

cin >> a >> b;

if (a == b)

cout << “A is equal to B\n”;

▪ This is the same if statement as the previous example but we

removed the curly brackets to shorten the program

CSCE 2004 - Programming Foundations I 35

THE IF STATEMENT

// Block of code that never executes

if (1 == 2)

{

cout << “This code will never execute\n”;

}

// Block of code that always executes

if (1 < 2)

{

cout << “This code will always execute\n”;

}

CSCE 2004 - Programming Foundations I 36

THE IF-ELSE

STATEMENT

▪ Sometimes we need to handle two alternatives in our code

▪ The C++ syntax of the if-else statement is:

if (logical expression)

{

// Block of code to execute if expression is true

}

else

{

// Block of code to execute if expression is false

}

CSCE 2004 - Programming Foundations I 37

THE IF-ELSE

STATEMENT

▪ Programming style suggestions:

▪ Type the “if line” and the “else line” and the { } brackets so

they are vertically aligned with each other

▪ Do not put a semi-colon after the “if line” or the “else line” or

you will get very strange run time errors

▪ The two blocks of code should be indented 3-4 spaces to aid

program readability

▪ If either block of code is only one line long, we can omit the

curly brackets { } and shorten the length of the program

CSCE 2004 - Programming Foundations I 38

THE IF-ELSE

STATEMENT

▪ We can visualize the program’s if-else statement decision

process using a “flow chart” diagram

CSCE 2004 - Programming Foundations I 39

Logical

expression

Block of code

executed if true

truefalse

Block of code

executed if false

THE IF-ELSE

STATEMENT

▪ If the logical expression is true, we take one path through

the diagram (executing one block of code)

CSCE 2004 - Programming Foundations I 40

Logical

expression

Block of code

executed if true

truefalse

Block of code

executed if false

THE IF-ELSE

STATEMENT

▪ If the logical expression is false, we take one path through

the diagram (executing the other block of code)

CSCE 2004 - Programming Foundations I 41

Logical

expression

Block of code

executed if true

truefalse

Block of code

executed if false

THE IF-ELSE

STATEMENT

// Simple if-else example

if ((a > 0) && (b > 0))

{

c = a / b;

a = a - c;

}

else

{

c = a * b;

a = b + c;

}

CSCE 2004 - Programming Foundations I 42

THE IF-ELSE

STATEMENT

// Ugly if-else example

if (a < b) {

c = a * 3;

a = b - c; } else

a = c + 5;

▪ This code is technically correct, but it is difficult for

humans to read and understand the intended logic

CSCE 2004 - Programming Foundations I 43

THE IF-ELSE

STATEMENT

// Pretty if-else example

if (a < b)

{

c = a * 3;

a = b - c;

}

else

a = c + 5;

▪ This is the same portion of code with proper indentation

so it is much easier for humans to read and understand

CSCE 2004 - Programming Foundations I 44

Notice that the else

part is only one line

long so we omitted

the curly brackets

GRADE CALCULATION

EXAMPLE

▪ How can we convert test scores to letter grades?

▪ We must read test scores with values between 0..100

▪ We want to output corresponding A,B,C,D,F letter grades

▪ To find the letter grade, we need a series of if statements

▪ If score is between 90..100 output A

▪ If score is between 80..89 output B

▪ If score is between 70..79 output C

▪ If score is between 60..69 output D

▪ If score is between 0..59 output F

CSCE 2004 - Programming Foundations I 45

GRADE CALCULATION

EXAMPLE

▪ It is very important to develop and test programs

incrementally, just a few lines at a time

▪ Start by writing comments that describe the steps you want

the program to take

▪ Then add some code under each comment that

implements that part of the program

▪ Then compile and run the partial program to make sure

there are no syntax errors, and that the part you have

implemented is working correctly

▪ Continue adding small pieces of code, compiling and

testing the program until it is complete

CSCE 2004 - Programming Foundations I 46

GRADE CALCULATION

EXAMPLE

// Program to convert test scores into letter grades

#include <iostream>

using namespace std;

int main()

{

// Local variable declarations

// Read test score

// Calculate letter grade

// Print output

return 0;

}

CSCE 2004 - Programming Foundations I 47

The first step is to write

comments in the main

program to explain our

approach

This will compile and run

but not do anything

GRADE CALCULATION

EXAMPLE

// Program to convert test scores into letter grades

#include <iostream>

using namespace std;

int main()

{

// Local variable declarations

float Score = 0;

char Grade = '?' ;

// Read test score

cout << “Enter test score: ”;

cin >> Score;

cout >> “Score: ” << Score << endl;

…

CSCE 2004 - Programming Foundations I 48

Next, we add code to the

main program to get the

input test score

This will compile and run

but only read and print

the input test score

GRADE CALCULATION

EXAMPLE

// Local variable declarations

float Score = 0;

char Grade = '?' ;

// Read test score

cout << “Enter test score: “;

cin >> Score;

cout >> “Score: ” << Score << endl;

// Calculate letter grade

if ((Score >= 90) && (Score <= 100))

Grade = 'A';

// Print output

cout << “Grade: ” << Grade << endl;

…

CSCE 2004 - Programming Foundations I 49

Next, we add more code

calculate one letter grade

and then print output

This will compile and run

but it will only calculate A

grades correctly

GRADE CALCULATION

EXAMPLE

…

// Calculate letter grade

if ((Score >= 90) && (Score <= 100))

Grade = 'A';

if ((Score >= 80) && (Score < 90))

Grade = 'B';

if ((Score >= 70) && (Score < 80))

Grade = 'C';

if ((Score >= 60) && (Score < 70))

Grade = 'D';

if ((Score >= 0) && (Score < 60))

Grade = 'F';

…

CSCE 2004 - Programming Foundations I 50

Finally, we add more

code to calculate the

remaining letter grades

This will compile and

run and hopefully

calculate all grades

GRADE CALCULATION

EXAMPLE

▪ We should start testing with “expected” input values

▪ Try test scores that we know are in the middle of the

A,B,C,D,F letter ranges (e.g. 95,85,75,65,55)

▪ Try input values that are “on the border” of the letter grade

ranges to make sure we have our “>=” and “>” conditions

right (e.g. 79,80,81)

▪ We should then test “unexpected” input values

▪ Try entering test values that are outside the 0..100 range

to see what the program will output

▪ Finally, see what happens if the user enters something

other than an integer test score (e.g. 3.14159, “hello”)

CSCE 2004 - Programming Foundations I 51

SUMMARY

▪ In this section we have studied the syntax and use of the

C++ if statement and the if-else statement

▪ We have also seen how flow chart diagrams can be used

to visualize different execution paths in a program

▪ Finally, we showed how if statements can be used to

implement a simple grade calculation program

CSCE 2004 - Programming Foundations I 52

CONDITIONAL

STATEMENTS

PART 3

NESTED IF STATEMENTS

NESTED IF

STATEMENTS

▪ We can have two or more if statements inside each other

to check multiple conditions

▪ These are called nested if statements

▪ Use indentation to reflect nesting and aid readability

▪ Typically indent 3-4 spaces or one tab per nesting level

▪ Need to be careful when matching up { } brackets

▪ This way you can decipher the nesting of conditions

CSCE 2004 - Programming Foundations I 54

NESTED IF

STATEMENTS

if (logical expression1)

{

if (logical expression2)

{

// Statements to execute if expressions1 and expression2 are true

}

else

{

// Statements to execute if expression1 true and expression2 false

}

}

else

{

// Statements to execute if expression1 false

}

CSCE 2004 - Programming Foundations I 55

NESTED IF

STATEMENTS

// Simple nested if example

cin >> a >> b;

if (a < b)

{

cout << “A is smaller than B\n”;

if ((a > 0) && (b > 0))

cout << “A and B are both positive\n”;

else

cout << “A or B or both are negative\n”;

}

CSCE 2004 - Programming Foundations I 56

NESTED IF

STATEMENTS

// Ugly nested if example

if (a > 0) {

if (b < 0) {

a = 3 * b;

c = a + b; } }

else {

a = 2 * a;

c = b / a; }

CSCE 2004 - Programming Foundations I 57

It is hard to see what

if statement the else

code goes with

NESTED IF

STATEMENTS

// Pretty nested if example

if (a > 0)

{

if (b < 0)

{

a = 3 * b;

c = a + b;

}

}

else

{

a = 2 * a;

c = b / a;

}
CSCE 2004 - Programming Foundations I 58

Now we can see the

else goes with the

first if statement

NESTED IF

STATEMENTS

▪ We can use nested if statements to calculate grades with

fewer comparison operations then the previous example

▪ The key is to make use of what we know is true when we

go into the “else” block of code and not test this again

if (Score >= 90)

Grade = 'A';

else

{

…

}

CSCE 2004 - Programming Foundations I 59

We know Score < 90 so we do

not need to test for this again

NESTED IF

STATEMENTS

if (Score >= 90)

Grade = 'A';

else

{

if (Score >= 80)

Grade = ‘B';

else

{

…

}

}

CSCE 2004 - Programming Foundations I 60

We know Score < 80 so we do

not need to test for this again

We also know Score < 90 so

the score is in the B range

NESTED IF

STATEMENTS

if (Score >= 90)

Grade = 'A';

else if (Score >= 80)

Grade = 'B';

else if (Score >= 70)

Grade = 'C';

else if (Score >= 60)

Grade = 'D';

else if (Score >= 0)

Grade = 'F’;

CSCE 2004 - Programming Foundations I 61

Since each else block is only

one line long we can omit the

curly brackets to save space

We can also line up all of the

“else if” statements with the

original if statement

BOOLEAN VARIABLES

▪ In C++ we can store true/false values in Boolean variables

▪ The constants true and false can be used to initialize bool

variables

▪ bool Done = true;

▪ bool Quit = false;

▪ Boolean expressions can also be used to initialize bool

variables

▪ int a = 2, b = 3;

▪ bool Positive = (a >= 0);

▪ bool Negative = (b < 0);

CSCE 2004 - Programming Foundations I 62

BOOLEAN VARIABLES

▪ Boolean variables and true/false constants can also be

used in logical expressions

▪ (Done == true) is true

▪ (Quit != true) is true

▪ (Done == Quit) is false

▪ (true == Positive) is true

▪ ((a < b) == false) is false

▪ (Negative) is false

CSCE 2004 - Programming Foundations I 63

BOOLEAN VARIABLES

▪ Internally C++ stores Boolean variables as integers

▪ 0 is normally used for false

▪ 1 is normally used for true

▪ Any value not equal to 0 is considered true

▪ It is considered “bad programming style” to use integers

instead of the true/false keywords

▪ bool Good = 0;

▪ bool Bad = 1;

▪ bool Ugly = 2;

CSCE 2004 - Programming Foundations I 64

BOOLEAN VARIABLES

▪ Integers are used when writing Boolean values

▪ cout << Good will print 0

▪ cout << Bad will print 1

▪ cout << Ugly will also print 1

▪ Integers are also used when reading Boolean values

▪ cin >> Good;

▪ Entering 0 sets Good variable to false

▪ Entering any value >= 1 sets Good variable to true

▪ Entering value < 0 also sets Good variable to true

▪ Entering “true” or “false” will not work

CSCE 2004 - Programming Foundations I 65

BOOLEAN VARIABLES

▪ Boolean variables are often used for status flags

▪ Set status flag to initial value

▪ Test to see if certain condition occurs

▪ Update status flag when necessary

bool Positive = true;

if (a < 0) Positive = false;

if (b < 0) Positive = false;

if (c < 0) Positive = false;

CSCE 2004 - Programming Foundations I 66

PRIME NUMBER

EXAMPLE

▪ How can we test a number to see if it is prime?

▪ We are given numerical values between 1..100

▪ We need to see if it has any factors besides 1 and itself

▪ If no factors found then number is prime

▪ We need some nested if statements

▪ Test if input number is between 1..100

▪ If so, then test if 2,3,5,7 are factors of input number

▪ Then print out “prime” or “not prime”

CSCE 2004 - Programming Foundations I 67

PRIME NUMBER

EXAMPLE

▪ How can we test a if F is a factor of N?

▪ By definition “A factor of N is an integer F that may be

multiplied by some other integer to produce N”

▪ N = F * V for some integer V

▪ N / F = V with no remainder

▪ (F * (N / F) == N) true if F a factor

▪ (N % F == 0) true if F a factor

• To be a prime factor, F can not equal N

• ((N != F) && (N % F == 0))

CSCE 2004 - Programming Foundations I 68

PRIME NUMBER

EXAMPLE

// Check for prime numbers using a factoring approach

#include <iostream>

using namespace std;

int main()

{

// Local variable declarations

// Read input parameters

// Check input is valid

// Check if number is prime

// Print output

return 0;

}

CSCE 2004 - Programming Foundations I 69

For the first version

of program we just

write comments in

the main program to

explain our approach

PRIME NUMBER

EXAMPLE

// Check for prime numbers using a factoring approach

#include <iostream>

using namespace std;

int main()

{

// Local variable declarations

int Number = 0;

bool Prime = true;

// Read input parameters

cout << “Enter a number [1..100]:”;

cin >> Number;

CSCE 2004 - Programming Foundations I 70

For the second

version of program

we initialize variables

and read the input

value from user

PRIME NUMBER

EXAMPLE

…

cout << “Enter a number [1..100]:”;

cin >> Number;

// Check input is valid

if ((Number < 1) || (Number > 100))

cout << “Error: Number is out of range\n”;

else

{

// Check if number is prime

// Print output

}

CSCE 2004 - Programming Foundations I 71

For the next version

of the program we

add code to verify the

range of input value

PRIME NUMBER

EXAMPLE

…

cout << “Enter a number [1..100]:”;

cin >> Number;

// Check input is valid

if ((Number >= 1) && (Number <= 100))

{

// Check if number is prime

// Print output

}

else

cout << “Error: Number is out of range\n”;

CSCE 2004 - Programming Foundations I 72

For the next version

of the program we

add code to verify the

range of input value

PRIME NUMBER

EXAMPLE

…

// Check if number is prime

if (Number == 1) Prime = false;

if ((Number != 2) && (Number % 2 == 0)) Prime = false;

if ((Number != 3) && (Number % 3 == 0)) Prime = false;

if ((Number != 5) && (Number % 5 == 0)) Prime = false;

if ((Number != 7) && (Number % 7 == 0)) Prime = false;

// Print output

if (Prime)

cout << “Number “ << Number << “ IS prime\n”;

else

cout << “Number “ << Number << “ is NOT prime\n”;

…CSCE 2004 - Programming Foundations I 73

In the final

version we finish

the prime number

calculation and

print the output

PRIME NUMBER

EXAMPLE

▪ How should we test the prime number program?

▪ Test the range checking code by entering values “on the

border” of the input range (e.g. 0,1,2 and 99,100,101)

▪ Test program with several values we know are prime

▪ Test program with several values we know are not prime

▪ To be really compulsive we could test all values between

1..100 and compare to known prime numbers

▪ What is wrong with this program?

▪ It only works for inputs between 1..100

▪ It will not “scale up” easily if we extend this input range

CSCE 2004 - Programming Foundations I 74

SUMMARY

▪ In this section we showed how if statements and if-else

statements can be nested inside each other to create more

complex paths through a program

▪ We also showed how proper indenting is important to read

and understand programs with nested if statements

▪ We have seen how Boolean variables can be used to store

true/false values in a program

▪ Finally, we used an incremental approach to create a

program for checking the factors of input numbers to see

if they are prime or not

CSCE 2004 - Programming Foundations I 75

CONDITIONAL

STATEMENTS

PART 4

SWITCH STATEMENTS

SWITCH STATEMENTS

▪ The switch statement is convenient for handling multiple

branches based on the value of one decision variable

▪ The program looks at the value of the decision variable

▪ The program jumps directly to the matching case label

▪ The statements following the case label are executed

▪ Special features of the switch statement:

▪ The “break” command at the end of a block of statements

will make the program jump to the end of the switch

▪ The program executes the statements after the “default”

label if no other cases match the decision variable

CSCE 2004 - Programming Foundations I 77

SWITCH STATEMENTS

switch (decision variable)

{

case value1 :

// Statements to execute if variable equals value1

break;

case value2:

// Statements to execute if variable equals value2

break;

...

default:

// Statements to execute if variable not equal to any value

}

CSCE 2004 - Programming Foundations I 78

SWITCH STATEMENTS

int Age = 0;

cin >> Age;

switch (Age)

{

case 0:

cout << “Stop being such a baby” << endl;

break;

case 7:

cout << “Are you going to first grade now?” << endl;

break;

CSCE 2004 - Programming Foundations I 79

The program will execute this

code only if Age == 0

SWITCH STATEMENTS

case 21:

cout << “Lets go for a drink” << endl;

break;

case 42:

cout << “This is the ultimate age” << endl;

break;

default:

cout << “Your age is boring” << endl;

}

CSCE 2004 - Programming Foundations I 80

SWITCH STATEMENTS

char Choice = ‘ ‘;

cin >> Choice;

switch (Choice)

{

case ‘d’: case ‘D’:

cout << “Deposit money in bank” << endl;

break;

case ‘w’: case ‘W’:

cout << “Withdraw money from bank” << endl;

break;

CSCE 2004 - Programming Foundations I 81

The program will execute this

code only if Choice is ‘d’ or ‘D’

SWITCH STATEMENTS

case ‘t’: case ‘T’:

cout << “Transfer money between accounts” << endl;

break;

case ‘q’: case ‘Q’:

cout << “Quit banking program” << endl;

break;

default:

cout << “Invalid command” << endl;

}

CSCE 2004 - Programming Foundations I 82

SWITCH STATEMENTS

▪ The main advantage of switch statement over a sequence

of if-else statements is that it is much faster

▪ Jumping to blocks of code is based on a lookup table

instead of a sequence of variable comparisons

▪ The main disadvantage of switch statements is that the

decision variable must be an integer or a character

▪ We can not use a switch with a float or string decision

variable or with complex logical expressions

CSCE 2004 - Programming Foundations I 83

MENU EXAMPLE

▪ How can we create a user interface for banking?

▪ Assume user selects commands from a menu

▪ We need to see read and process user commands

▪ We can use a switch statements to handle menu

▪ Ask user for numerical code for user command

▪ Jump to the code to process that banking operation

▪ Repeat until the user quits the application

CSCE 2004 - Programming Foundations I 84

MENU EXAMPLE

// Simulate bank deposits and withdrawals

#include <iostream>

using namespace std;

int main()

{

// Local variable declarations

// Print command prompt

// Read user input

// Handle banking command

return 0;

}

CSCE 2004 - Programming Foundations I 85

For the first version

of program we just

write comments in

the main program to

explain our approach

MENU EXAMPLE

…

// Local variable declarations

int Command = 0;

// Print command prompt

cout << “Enter command number:\n”;

// Read user input

cin >> Command;

…

CSCE 2004 - Programming Foundations I 86

For the next version

of program we add

the code to read the

user command

MENU EXAMPLE

// Handle banking command

switch (Command)

{

case 0: // Quit code

break;

case 1: // Deposit code

break;

case 2: // Withdraw code

break;

case 3: // Print balance code

break;

}

CSCE 2004 - Programming Foundations I 87

Then we add the

skeleton of the switch

statement to handle

the user command

MENU EXAMPLE

// Simulate bank deposits and withdrawals

#include <iostream>

using namespace std;

int main()

{

// Local variable declarations

int Command = 0;

int Money = 0;

int Balance = 100;

// Print command prompt

cout << “Enter command number:\n”

<< “ 0 - quit\n”

<< “ 1 - deposit money\n”

<< “ 2 - withdraw money\n”

<< “ 3 - print balance\n”;

CSCE 2004 - Programming Foundations I 88

In the final version

add bank account

variables and add

code to perform

banking operations

MENU EXAMPLE

// Read and handle banking commands

cin >> Command;

switch (Command)

{

case 0: // Quit code

cout << “See you later!” << endl;

break;

case 1: // Deposit code

cout << “Enter deposit amount: “;

cin >> Money;

Balance = Balance + Money;

break;

CSCE 2004 - Programming Foundations I 89

MENU EXAMPLE

case 2: // Withdraw code

cout << “Enter withdraw amount: “;

cin >> Money;

Balance = Balance - Money;

break;

case 3: // Print balance code

cout << “Current balance = “ << Balance << endl;

break;

default: // Handle other values

cout << “Ooops try again” << endl;

break;

}

// Print final balance

cout << “Final balance = “ << Balance << endl;

}

CSCE 2004 - Programming Foundations I 90

MENU EXAMPLE

▪ First, we should test program with “normal” inputs

▪ Try entering all valid menu commands

▪ Try variety of deposit/withdraw amounts

▪ Then, we should test with “abnormal” inputs

▪ What happens if we enter an invalid menu command?

▪ What happens if we enter a negative input value?

▪ What happens if the withdraw amount is larger then the

account balance?

▪ If we find problems, we should fix them or document them

CSCE 2004 - Programming Foundations I 91

IMPROVED MENU

EXAMPLE

▪ To improve the menu, we can use letters that match the

commands d=deposit, w=withdrawal instead of numbers

▪ Print letter based command menu

▪ Read in letters from user

▪ Convert switch cases to letters

▪ To avoid negative balances, we must check to see if there

is enough money in account before doing the withdrawal

▪ This requires an if statement inside the switch

▪ Only do the withdrawal if the amount is valid

▪ Print error message if withdrawal amount is invalid

CSCE 2004 - Programming Foundations I 92

IMPROVED MENU

EXAMPLE

// Print command prompt

cout << “Enter command character:\n”

<< “ q / Q - quit\n”

<< “ d / D - deposit money\n”

<< “ w / W - withdraw money\n”

<< “ p / P - print balance\n”;

// Read user input

char Command = ‘ ‘;

cin >> Command;

CSCE 2004 - Programming Foundations I 93

Read single letter

for user command

IMPROVED MENU

EXAMPLE

// Handle banking command

switch (Command)

{

case ‘q’: case ‘Q’: // Quit code

break;

case ‘d’: case ‘D’: // Deposit code

break;

case ‘w’: case ‘W’: // Withdraw code

break;

case ‘p’: case ‘P’: // Print balance code

break;

}

CSCE 2004 - Programming Foundations I 94

Our new switch

statement will use

single character to

select a command

IMPROVED MENU

EXAMPLE

case ‘w’: case ‘W’: // Withdraw code

cout << “Enter withdraw amount: “;

cin >> Money;

if ((Money <= Balance) && (Money > 0))

Balance = Balance - Money;

else

cout << “Can not withdraw money\n”;

break;

CSCE 2004 - Programming Foundations I 95

This if statement

does error checking

before withdrawing

the money

SOFTWARE

ENGINEERING TIPS

▪ There are many ways to write conditional code

▪ Your task is to find the simplest correct code for the task

▪ Make your code easy to read and understand

▪ Indent your program to reflect the nesting of blocks of code

▪ Develop your program incrementally

▪ Compile and run your code frequently

▪ Anticipate potential user input errors

▪ Check for normal and abnormal input values

CSCE 2004 - Programming Foundations I 96

SOFTWARE

ENGINEERING TIPS

▪ Common programming mistakes

▪ Missing or unmatched () brackets in logical expressions

▪ Missing or unmatched { } brackets in conditional statement

▪ Missing break statement at bottom of switch cases

▪ Never use & instead of && in logical expressions

▪ Never use | instead of || in logical expressions

▪ Never use = instead of == in logical expressions

▪ Never use “;” directly after logical expression

CSCE 2004 - Programming Foundations I 97

SUMMARY

▪ In this section we have studied the syntax and use of the

C++ switch statement

▪ We also showed an example where a switch statement

was used to create a menu-based banking program

▪ Finally, have discussed several software engineering tips

for creating and debugging conditional programs

CSCE 2004 - Programming Foundations I 98

	Slide 1: Conditional Statements
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: Conditional Statements
	Slide 5: logical expressions
	Slide 6: logical expressions
	Slide 7: logical expressions
	Slide 8: logical expressions
	Slide 9: logical expressions
	Slide 10: Complex logical expressions
	Slide 11: Complex logical expressions
	Slide 12: Complex logical expressions
	Slide 13: examples
	Slide 14: Complex logical expressions
	Slide 15: Start here
	Slide 16: The NOT operator
	Slide 17: The NOT operator
	Slide 18: The NOT operator
	Slide 19: The NOT operator
	Slide 20: The NOT operator
	Slide 21: summary
	Slide 22: De morgan’s laws (optional)
	Slide 23: De morgan’s laws (optional)
	Slide 24: De morgan’s laws (optional)
	Slide 25: De morgan’s laws (optional)
	Slide 26: De morgan’s laws (optional)
	Slide 27: De morgan’s laws (optional)
	Slide 28: Conditional Statements
	Slide 29: The if statement
	Slide 30: The if statement
	Slide 31: The if statement
	Slide 32: The if statement
	Slide 33: The if statement
	Slide 34: The if statement
	Slide 35: The if statement
	Slide 36: The if statement
	Slide 37: The if-else statement
	Slide 38: The if-else statement
	Slide 39: The if-else statement
	Slide 40: The if-else statement
	Slide 41: The if-else statement
	Slide 42: The if-else statement
	Slide 43: The if-else statement
	Slide 44: The if-else statement
	Slide 45: Grade calculation example
	Slide 46: Grade calculation example
	Slide 47: Grade calculation example
	Slide 48: Grade calculation example
	Slide 49: Grade calculation example
	Slide 50: Grade calculation example
	Slide 51: Grade calculation example
	Slide 52: summary
	Slide 53: Conditional Statements
	Slide 54: Nested if statements
	Slide 55: Nested if statements
	Slide 56: Nested if statements
	Slide 57: Nested if statements
	Slide 58: Nested if statements
	Slide 59: Nested if statements
	Slide 60: Nested if statements
	Slide 61: Nested if statements
	Slide 62: Boolean variables
	Slide 63: Boolean variables
	Slide 64: Boolean variables
	Slide 65: Boolean variables
	Slide 66: Boolean variables
	Slide 67: Prime number example
	Slide 68: Prime number example
	Slide 69: Prime number example
	Slide 70: Prime number example
	Slide 71: Prime number example
	Slide 72: Prime number example
	Slide 73: Prime number example
	Slide 74: Prime number example
	Slide 75: summary
	Slide 76: Conditional Statements
	Slide 77: Switch statements
	Slide 78: Switch statements
	Slide 79: Switch statements
	Slide 80: Switch statements
	Slide 81: Switch statements
	Slide 82: Switch statements
	Slide 83: Switch statements
	Slide 84: Menu example
	Slide 85: Menu example
	Slide 86: Menu example
	Slide 87: Menu example
	Slide 88: Menu example
	Slide 89: Menu example
	Slide 90: Menu example
	Slide 91: Menu example
	Slide 92: Improved menu example
	Slide 93: Improved Menu example
	Slide 94: Improved Menu example
	Slide 95: Improved Menu example
	Slide 96: Software engineering tips
	Slide 97: Software engineering tips
	Slide 98: summary

